Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511494

RESUMO

Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) are in the position to integrate stress-related information and initiate adaptive neuroendocrine-, autonomic-, metabolic- and behavioral responses. In addition to hypophyseotropic cells, CRH is widely expressed in the CNS, however its involvement in the organization of the stress response is not fully understood. In these experiments, we took advantage of recently available Crh-IRES-Cre;Ai9 mouse line to study the recruitment of hypothalamic and extrahypothalamic CRH neurons in categorically distinct, acute stress reactions. A total of 95 brain regions in the adult male mouse brain have been identified as containing putative CRH neurons with significant expression of tdTomato marker gene. With comparison of CRH mRNA and tdTomato distribution, we found match and mismatch areas. Reporter mice were then exposed to restraint, ether, high salt, lipopolysaccharide and predator odor stress and neuronal activation was revealed by FOS immunocytochemistry. In addition to a core stress system, stressor-specific areas have been revealed to display activity marker FOS. Finally, activation of CRH neurons was detected by colocalization of FOS in tdTomato expressing cells. All stressors resulted in profound activation of CRH neurons in the hypothalamic paraventricular nucleus; however, a differential activation of pattern was observed in CRH neurons in extrahypothalamic regions. This comprehensive description of stress-related CRH neurons in the mouse brain provides a starting point for a systematic functional analysis of the brain stress system and its relation to stress-induced psychopathologies.


Assuntos
Hormônio Liberador da Corticotropina , Hipotálamo , Camundongos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
2.
iScience ; 25(8): 104693, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35880047

RESUMO

There is a strong relationship between stress and metabolism. Because acute traumatic- and chronic stress events are often accompanied with metabolic pathophysiology, it is important to understand the details of the metabolic stress response. In this study we directly compared metabolic effects of acute stress with chronic repeated- and chronic unpredictable stress in mouse models. All types of adversities increased energy expenditure, chronic stress exposure decreased body weight gain, locomotor activity and differentially affected fuel utilization. During chronic exposure to variable stressors, carbohydrates were the predominant fuels, whereas fatty acids were catabolized in acutely and repeatedly restrained animals. Chronic exposure to variable stressors in unpredictable manner provoked anxiety. Our data highlight differences in metabolic responses to acute- repeated- and chronic stressors, which might affect coping behavior and underlie stress-induced metabolic and psychopathologies.

3.
Mol Ther Methods Clin Dev ; 20: 218-226, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426148

RESUMO

We developed an orally administered, engineered, bacterium-based, RNA interference-mediated therapeutic method to significantly reduce the symptoms in the most frequently used animal model of inflammatory bowel disease. This bacterium-mediated RNA interference strategy was based on the genomically stable, non-pathogenic E. coli MDS42 strain, which was engineered to constitutively produce invasin and the listeriolysin O cytolysin. These proteins enabled the bacteria first to invade the colon epithelium and then degrade in the phagosome. This allowed the delivery of a plasmid encoding small hairpin RNA (shRNA) targeting tumor necrosis factor (TNF) into the cytoplasm of the target cells. The expression levels of TNF and other cytokines significantly decreased upon this treatment in dextran sulfate sodium (DSS)-induced colitis, and the degree of inflammation was significantly reduced. With further safety modifications this method could serve as a safe and side effect-free alternative to biologicals targeting TNF or other inflammatory mediators.

4.
Toxins (Basel) ; 12(11)2020 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266415

RESUMO

Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.


Assuntos
Rim/efeitos dos fármacos , Ocratoxinas/toxicidade , Animais , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Ocratoxinas/sangue , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética
5.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867390

RESUMO

There is an increasing number of studies showing that thrombocytosis-accompanying a variety of solid tumors including colorectal cancer (CRC)-is associated with shorter survival and earlier development of metastases. The mechanisms of cancer-associated thrombocytosis are not completely understood yet. The aim of our study was to evaluate the role of IL-6 in tumor development and thrombocytosis in mice with inflammation-induced CRC, using a CRISPR/cas9 IL-6 knockout (KO) strain. Adult male FB/Ant mice (n = 39) were divided into four groups: (1) IL-6 KO controls (n = 5); (2) IL-6 KO CRC model group (n = 18); (3) Wild-type (WT) controls (n = 6); and (4) WT CRC model group (n = 10). CRC model animals in (2) and (4) received azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment to induce inflammation-related CRC. Plasma and liver tissues were obtained to determine platelet counts, IL-6 and thrombopoietin-1 (TPO) levels. In 1 WT and 2 IL-6 KO mice in vivo confocal endomicroscopy and 18F-fluorodeoxyglucose (FDG) PET/MRI examinations were performed to evaluate the inflammatory burden and neoplastic transformation. At the end of the study, tumorous foci could be observed macroscopically in both CRC model groups. Platelet counts were significantly elevated in the WT CRC group compared to the IL-6 KO CRC group. TPO levels moved parallelly with platelet counts. In vivo fluorescent microscopy showed signs of disordered and multi-nuclear crypt morphology with increased mucus production in a WT animal, while regular mucosal structure was prominent in the IL-6 KO animals. The WT animal presented more intense and larger colonic FDG uptake than IL-6 KO animals. Our study confirmed thrombocytosis accompanying inflammation-related CRC and the crucial role of IL-6 in this process. Significantly higher platelet counts were found in the WT CRC group compared to both the control group and the IL-6 KO group. Concomitantly, the tumor burden of WT mice was also greater than that of IL-6 KO mice. Our findings are in line with earlier paraneoplastic IL-6 effect suggestions.


Assuntos
Neoplasias Associadas a Colite/genética , Interleucina-6/genética , Trombocitose/genética , Animais , Azoximetano/efeitos adversos , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/complicações , Neoplasias Associadas a Colite/diagnóstico por imagem , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Imageamento por Ressonância Magnética , Masculino , Camundongos , Contagem de Plaquetas , Tomografia por Emissão de Pósitrons , Trombocitose/sangue , Trombocitose/etiologia , Trombocitose/metabolismo , Trombopoetina/metabolismo
6.
Med Hypotheses ; 137: 109564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31954994

RESUMO

Parkinson's disease (PD) is a neurodegenerative amyloid disorder with debilitating motor symptoms due to the loss of dopamine-synthesizing, basal ganglia-projecting neurons in the substantia nigra. An interesting feature of the disease is that most of PD patients have gastrointestinal problems and bacterial dysbiosis, years before the full expression of motor symptoms. We hypothesized that antibiotic consumption might be a contributing factor of gut microbiome dysbiosis in PD, favoring curli-producing Enterobacteria. Curli is a bacterial α-synuclein (αSyn) which is deposited first in the enteric nervous system and amyloid deposits are propagated in a prion like manner to the central nervous system. In addition, antibiotics result in a low-grade systemic inflammation, which also contributes to damage of neurons in enteric- and central nervous system. To support our hypothesis, by comparing PD prevalence change with antibiotic consumption data in EU countries, we found significant positive correlation between use narrow spectrum penicillin + penicillinase resistant penicillin and increased prevalence of the disease.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Antibacterianos/efeitos adversos , Disbiose/induzido quimicamente , Humanos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína
7.
Brain Behav Immun ; 84: 218-228, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821847

RESUMO

Chronic stress is often accompanied by gastrointestinal symptoms, which might be due to stress-induced shift of gut microbiome to pathogenic bacteria. It has been hypothesized that stress alters gut permeability and results in mild endotoxemia which exaggerates HPA activity and contributes to anxiety and depression. To reveal the relationship between microbiome composition, stress-induced gastrointestinal functions and behavior, we treated chronically stressed mice with non-absorbable antibiotic, rifaximin. The "two hits" stress paradigm was used, where newborn mice were separated from their mothers for 3 h daily as early life adversity (maternal separation, MS) and exposed to 4 weeks chronic variable stress (CVS) as adults. 16S rRNA based analysis of gut microbiome revealed increases of Bacteroidetes and Proteobacteria and more specifically, Clostridium species in chronically stressed animals. In mice exposed to MS + CVS, we found extenuation of colonic mucosa, increased bacterial translocation to mesenteric lymph node, elevation of plasma LPS levels and infiltration of F4/80 positive macrophages into the colon lamina propria. Chronically stressed mice displayed behavioral signs of anxiety-like behavior and neophobia. Rifaximin treatment decreased Clostridium concentration, gut permeability and LPS plasma concentration and increased colonic expression of tight junction proteins (TJP1, TJP2) and occludin. However, these beneficial effects of rifaximin in chronically stressed mice was not accompanied by positive changes in behavior. Our results suggest that non-absorbable antibiotic treatment alleviates stress-induced local pathologies, however, does not affect stress-induced behavior.


Assuntos
Microbioma Gastrointestinal , Microbiota , Rifaximina , Animais , Antibacterianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Privação Materna , Camundongos , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16S/genética , Rifaximina/farmacologia , Estresse Fisiológico/efeitos dos fármacos
8.
Cells ; 8(8)2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387265

RESUMO

Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos Bege/metabolismo , Homeostase , Proteínas Adaptadoras de Transdução de Sinal/genética , Adipócitos Bege/citologia , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
Sci Rep ; 9(1): 6224, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996341

RESUMO

Glucose is a major fuel for the central nervous system and hypoglycemia is a significant homeostatic stressor, which elicits counterregulatory reactions. Hypothalamic metabolic- and stress-related neurons initiate these actions, however recruitment of glia in control such adaptive circuit remain unknown. Groups of fed- and fasted-, vehicle-injected, and fasted + insulin-injected male mice were compared in this study. Bolus insulin administration to fasted mice resulted in hypoglycemia, which increased hypothalamo-pituitary-adrenal (HPA) axis- and sympathetic activity, increased transcription of neuropeptide Y (Npy) and agouti-related peptide (Agrp) in the hypothalamic arcuate nucleus and activated IBA1+ microglia in the hypothalamus. Activated microglia were found in close apposition to hypoglycemia-responsive NPY neurons. Inhibition of microglia by minocycline increased counterregulatory sympathetic response to hypoglycemia. Fractalkine-CX3CR1 signaling plays a role in control of microglia during hypoglycemia, because density and solidity of IBA1-ir profiles was attenuated in fasted, insulin-treated, CX3CR1 KO mice, which was parallel with exaggerated neuropeptide responses and higher blood glucose levels following insulin administration. Hypoglycemia increased Il-1b expression in the arcuate nucleus, while IL-1a/b knockout mice display improved glycemic control to insulin administration. In conclusion, activated microglia in the arcuate nucleus interferes with central counterregulatory responses to hypoglycemia. These results underscore involvement of microglia in hypothalamic regulation of glucose homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Hipoglicemia/metabolismo , Microglia/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Jejum , Homeostase/genética , Hipoglicemia/induzido quimicamente , Sistema Hipotálamo-Hipofisário/metabolismo , Insulina/administração & dosagem , Insulina/farmacologia , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Fragmentos de Peptídeos/metabolismo
10.
Behav Brain Res ; 334: 119-128, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28736330

RESUMO

Microglia, resident immune cells of the CNS are sensitive to various perturbations of the environment, such as stress exposure, and may be involved in translating these changes to behavior. Among the pathways mediating stress-related neuronal cues to microglia, the fractalkine-fractalkine receptor (CX3CR1) signaling plays a crucial role. Using mice, in which the CX3CR1 gene was deleted, we explored hormonal and behavioral responses to acute and chronic stress along with changes in hypothalamic microglia. CX3CR1-/- animals display active escape in forced swim- and tail suspension tests, exaggerated neuronal activation in the hypothalamic paraventricular nucleus and increased corticosterone release in response to restraint. Analysis of Iba1 immunostaining of hypothalamic sections revealed stress-related reduction of microglia in CX3CR1-/- mice. Because microglia also contribute to energy balance regulation, we characterized metabolic phenotype of CX3CR1-/- mice. Comparison of respiratory exchange ratio did not show genotype effect on fuel preference, however, the energy expenditure was increased in CX3CR1-/- mice, which may be related to their active coping behavior. Microglia and fractalkine signaling has been repeatedly shown to be involved chronic stress-induced depressive state. CX3CR1-/- mice did not become anhedonic in the "two hit" chronic stress paradigm, confirming resistance of these animals to chronic stress-induced mood alterations. However, there was no difference in stress hormone levels, open field performance and hypothalamic microglia distribution between the genotypes. These results highlight differential involvement of microglia fractalkine signaling in controlling/integrating hormonal-, metabolic and behavioral responses to acute and chronic stress challenges.


Assuntos
Adaptação Psicológica/fisiologia , Receptor 1 de Quimiocina CX3C/deficiência , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Anedonia/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Ligação ao Cálcio/metabolismo , Corticosterona/sangue , Reação de Fuga/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Estresse Psicológico/patologia
11.
Biochim Biophys Acta ; 1861(11): 1614-1622, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417459

RESUMO

Brown adipose tissue (BAT) plays essential role in metabolic- and thermoregulation and displays morphological and functional plasticity in response to environmental and metabolic challenges. BAT is a heterogeneous tissue containing adipocytes and various immune-related cells, however, their interaction in regulation of BAT function is not fully elucidated. Fractalkine is a chemokine synthesized by adipocytes, which recruits fractalkine receptor (CX3CR1)-expressing leukocytes into the adipose tissue. Using transgenic mice, in which the fractalkine receptor, Cx3cr1 gene was replaced by Gfp, we evaluated whether deficiency in fractalkine signaling affects BAT remodeling and function in high-fat-diet - induced obesity. Homo- and heterozygote male CX3CR1-GFP mice were fed with normal or fat enriched (FatED) diet for 10weeks. Interscapular BAT was collected for molecular biological analysis. Heterozygous animals in which fractalkine signaling remains intact, gain more weight during FatED than CX3CR1 deficient gfp/gfp homozygotes. FatED in controls resulted in macrophage recruitment to the BAT with increased expression of proinflammatory mediators (Il1a, b, Tnfa and Ccl2). Local BAT inflammation was accompanied by increased expression of lipogenic enzymes and resulted in BAT "whitening". By contrast, fractalkine receptor deficiency prevented accumulation of tissue macrophages, selectively attenuated the expression of Tnfa, Il1a and Ccl2, increased BAT expression of lipolytic enzymes (Atgl, Hsl and Mgtl) and upregulated genes involved thermo-metabolism (Ucp1, Pparg Pgc1a) in response to FatED. These results highlight the importance of fractalkine-CX3CR1 interaction in recruitment of macrophages into the BAT of obese mice which might contribute to local tissue inflammation, adipose tissue remodeling and regulation of metabolic-related genes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1/deficiência , Quimiocina CX3CL1/metabolismo , Temperatura Baixa , Dieta Hiperlipídica , Proteínas de Fluorescência Verde/metabolismo , Mediadores da Inflamação/metabolismo , Lipogênese/genética , Lipólise/genética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Receptores de Quimiocinas/deficiência , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Endocrinology ; 156(11): 3996-4007, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26248220

RESUMO

Xenoestrogens from synthetic or natural origin represent an increasing risk of disrupted endocrine functions including the physiological activity of the hypothalamo-pituitary-gonad axis. Ethinyl estradiol (EE2) is a synthetic estrogen used in contraceptive pills, whereas zearalenone (ZEA) is a natural mycoestrogen found with increasing prevalence in various cereal crops. Both EE2 and ZEA are agonists of estrogen receptor-α and accelerate puberty. However, the neuroendocrine mechanisms that are responsible for this effect remain unknown. Immature female Wistar rats were treated with EE2 (10 µg/kg), ZEA (10 mg/kg), or vehicle for 10 days starting from postnatal day 18. As a marker of puberty, the vaginal opening was recorded and neuropeptide and related transcription factor mRNA levels were measured by quantitative real time PCR and in situ hybridization histochemistry. Both ZEA and EE2 accelerated the vaginal opening, increased the uterine weight and the number of antral follicles in the ovary, and resulted in the increased central expression of gnrh. These changes occurred in parallel with an earlier increase of kiss1 mRNA in the anteroventral and rostral periventricular hypothalamus and an increased kisspeptin (KP) fiber density and KP-GnRH appositions in the preoptic area. These changes are compatible with a mechanism in which xenoestrogens overstimulate the developmentally unprepared reproductive system, which results in an advanced vaginal opening and an enlargement of the uterus at the periphery. Within the hypothalamus, ZEA and EE2 directly activate anteroventral and periventricular KP neurons to stimulate GnRH mRNA. However, GnRH and gonadotropin release and ovulation are disrupted due to xenoestrogen-mediated inhibitory KP signaling in the arcuate nucleus.


Assuntos
Etinilestradiol/farmacologia , Kisspeptinas/metabolismo , Maturidade Sexual/efeitos dos fármacos , Zearalenona/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/farmacologia , Estrogênios não Esteroides/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hibridização In Situ , Kisspeptinas/genética , Microscopia Confocal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento , Útero/metabolismo , Xenobióticos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...